Artesunate overcomes drug resistance in multiple myeloma by inducing mitochondrial stress and non-caspase apoptosis
نویسندگان
چکیده
Although novel drugs have contributed immensely to improving outcomes of patients with multiple myeloma (MM), many patients develop drug resistance and ultimately succumb to MM. Here, we show that artesunate, an anti-malarial drug, reliably induces cell death in vitro in naïve as well as drug-resistant MM cells at concentrations shown to be safe in humans. Artesunate induced apoptosis predominantly through the non-caspase mediated pathway by primarily targeting mitochondria and causing outer mitochondrial membrane permeabilization that led to cytosolic and subsequent nuclear translocation of mitochondrial proteins apoptosis inducing factor (AIF) and endonuclease G (EndoG). Nuclear translocation of AIF and EndoG was accompanied by low levels of reactive oxygen species (ROS) and increased mitochondrial production of superoxide. These effects were present before apoptosis was evident and were related to intracellular levels of bivalent iron (Fe+2). Artesunate's unique mechanism probably was at least partially responsible for, its ability to act synergistically with multiple anti-myeloma agents. Our findings suggest that artesunate acts through iron to affect the mitochondria and induce low ROS and non-caspase-mediated apoptosis. Its potency, toxicity profile, and synergism with other drugs make it an intriguing new candidate for MM treatment.
منابع مشابه
KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling.
Histone deacetylase inhibitors have emerged as promising anticancer drugs. Using an unbiased ultrahigh throughput screening system, a novel mercaptoketone-based histone deacetylase inhibitor series was identified that was optimized to the lead compound, KD5170. KD5170 inhibited the proliferation of myeloma cell lines and the viability of CD138(+) primary myeloma cells by induction of apoptosis,...
متن کاملTargeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM).
Second mitochondria-derived activator of caspases (Smac) promotes apoptosis via activation of caspases. Here we show that a low-molecular-weight Smac mimetic LBW242 induces apoptosis in multiple myeloma (MM) cells resistant to conventional and bortezomib therapies. Examination of purified patient MM cells demonstrated similar results, without significant cytotoxicity against normal lymphocytes ...
متن کاملHonokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis.
Honokiol (HNK) is an active component purified from magnolia, a plant used in traditional Chinese and Japanese medicine. Here we show that HNK significantly induces cytotoxicity in human multiple myeloma (MM) cell lines and tumor cells from patients with relapsed refractory MM. Neither coculture with bone marrow stromal cells nor cytokines (interleukin-6 and insulin-like growth factor-1) protec...
متن کاملFTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance.
The novel immunomodulator FTY720 down-modulates sphingosine-1-phosphate receptor 1 on lymphocytes at low nanomolar concentrations, thereby inhibiting sphingosine-1-phosphate receptor 1-dependent egress of lymphocytes from lymph nodes into efferent lymphatics and blood. At high micromolar concentration, FTY720 has been shown to induce growth inhibition and/or apoptosis in human cancer cells in v...
متن کاملEconazole Nitrate Induces Apoptosis in MCF-7 Cells via Mitochondrial and Caspase Pathways
Econazole nitrate (EN), a synthetic compound, is now in use as a routine antifungal drug. EN was shown to have antitumor effect, the tumor cell killing mechanisms, however, remain unclear. In this research, the apoptosis-inducing effect of EN on MCF-7 cells was investigated. The results showed that EN inhibited the proliferation of MCF-7 cells in a time- and dose-dependent manner by MTT method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014